
This article will introduce in detail how to design an energy storage cabinet device, and focus on how to integrate key components such as PCS (power conversion system), EMS (energy management system), lithium battery, BMS (battery management system), STS (static transfer switch), PCC (electrical connection control) and MPPT (maximum power point tracking) to ensure efficient, safe and reliable operation of the system. [pdf]
Energy storage cabinets are crucial in modern energy systems, offering versatile solutions for energy management, backup power, and renewable energy integration. As technology advances, these systems will continue to evolve, providing more efficient and reliable energy storage solutions.
The following are several key design points: Modular design: The design of the energy storage cabinet should adopt a modular structure to facilitate expansion, maintenance and replacement. Battery modules, inverters, protection devices, etc. can be designed and replaced independently.
Base-type energy storage cabinets are typically used for industrial and large-scale applications, providing robust and high-capacity storage solutions. Integrated energy storage containers combine energy storage with other essential systems, such as cooling and control, within a single, compact unit.
STS can complete power switching within milliseconds to ensure the continuity and reliability of power supply. In the design of energy storage cabinets, STS is usually used in the following scenarios: Power switching: When the power grid loses power or fails, quickly switch to the energy storage system to provide power.
Photovoltaic energy storage cabinets are designed specifically to store energy generated from solar panels, integrating seamlessly with photovoltaic systems. Energy storage systems must adhere to various GB/T standards, which ensure the safety, performance, and reliability of energy storage cabinets.
Lithium batteries have become the most commonly used battery type in modern energy storage cabinets due to their high energy density, long life, low self-discharge rate and fast charge and discharge speed.

This 100KW 215KWH C&I BESS cabinet adopts an integrated design, integrating battery cells, BMS, PCS, fire protection system, power distribution system, thermal management system, and energy management system into standardized outdoor cabinets, forming an integrated plug-and-play one-stop integrated product suitable for independent energy storage power stations, industrial and commercial user sides, microgrids and other application scenarios. [pdf]

Jinko ESS has announced the deployment of a 2.15MWh C&I energy storage project in El Salvador, utilizing 10 of its advanced liquid-cooled SunGiga 215kWh systems.Why is the El Salvador power project important?The power project, which began taking shape in 2013, is important for El Salvador because it offers cleaner energy production, replacing heavy fuel oil for power generation while offering flexibility the country needs to support the addition of more renewable energy resources to the national power grid. [pdf]
We are committed to excellence in solar power plants and energy storage solutions.
With complete control over our manufacturing process, we ensure the highest quality standards in every solar system and energy storage cabinet we deliver.